
Tangency and Normals, 10/03/2013

This map shows a landscape using contour lines. The contour lines represent level sets
of a function of two variables – the altitude at a particular longitude and latitude.

Running approximately perpendicular to the level curves are three other curves, marked
as a stream and two watershed boundaries. These curves follow the path of steepest ascent
(if we go from the bottom to the top). The tangent vectors to the stream and the watershed
boundaries are given by the gradient of the altitude function. In general, the gradient of a
function is perpendicular to its level curves and surfaces.

This example also shows some of the limitations of the gradient. From a point on the
stream, the direction of steepest ascent is given by walking upstream. However, the easiest
way to gain altitude fast is to go left or right, and climb the side of the valley. However,
when walking down one side of the valley to the stream and up the other side, we see that
the altitude function has a local minimum at the stream. In other words, the directional
derivative to the left or the right is 0. Taking the derivative only gives us the instantaneous
rate of change – it does not tell us that if we go in this direction we will soon begin to curve
up. That needs information from the second derivative.

The equation ∇f(a) · (x − a) = 0 gives the set of all vectors tangent to the level curve
or surface of f passing through a. The solution set is a tangent line or tangent plane. The
gradient ∇f is the normal vector perpendicular to that line or plane.

Exercise: The curve y2 = 6 − 2x2 gives an ellipse. As a level curve, this is f(x, y) =
2x2 + y2 = 6. To find the tangent line at (1, 2), we calculate ∇f = 〈4x, 2y〉 = 〈4, 4〉 at (1, 2).
Then the equation is 〈4, 4〉 · 〈x− 1, y − 2〉 = 4x+ 4y− 12 = 0. The line with direction 〈4, 4〉
is the “normal line” to the ellipse at (1, 2), because it intersects the ellipse perpendicularly
there.

Alternatively, we can calculate the slope of the line with implicit differentiation.



When considering tangents to a surface, there is an entire plane of tangent lines. For
example, let us consider the point (1, 1, 7) on the elliptic paraboloid z = 2x2 + 5y2. As a
level surface, this is f(x, y, z) = 2x2 + 5y2 − z = 0. The gradient is ∇f = 〈4x, 10y,−1〉, and
at (1, 1, 7) this is 〈4, 10,−1〉.

This vector must be perpendicular to the surface at (1, 1, 7), so the line 〈1, 1, 7〉 +
t 〈4, 10,−1〉 is the normal line to the elliptic paraboloid at that point. The tangent plane is
perpendicular to this line, so 〈4, 10,−1〉 is the normal vector, giving 4x + 10y − z = 7 for
the tangent plane.

Exercise:
Consider the point (2, 1,−1) on the surface xy3z2 = 2. This surface is already a level

surface, f(x, y, z) = xy3z2 = 2. ∇f = 〈y3z2, 3xy2z2, 2xy3z〉, and at the point (2, 1,−1) this
is 〈1, 6,−4〉. Therefore the tangent plane is x + 6y − 4z = 12.

When two surfaces intersect, the result is usually a curve. If a vector is tangent to that
curve at the point P , it must be tangent to both surfaces at the point P as well. Therefore
the tangent line will be the intersection of the two tangent planes. If one already knows
a point on the line of intersection of two planes, the easiest way to calculate the direction
vector is as the cross product of the two normals. So we have:

The tangent line to the curve of intersection of f = 0 and g = 0 has direction vector
∇f ×∇g.

Consider the intersection of the cone f(x, y, z) = x2 + 3y2 − 2z2 = 0 and the cylinder
g(x, y, z) = x2+y2−1 = 0. To find the tangent line at (0, 1,
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two functions at that point. ∇f = 〈2x, 6y,−4z〉 =
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and ∇g = 〈2x, 2y, 0〉 =
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, or more simply

〈1, 0, 0〉. The equation of the line is then
〈
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+ t 〈1, 0, 0〉.

Exercise: The plane y + z = 3 intersects the cylinder f(x, y, z) = x2 + y2 = 5 in an
ellipse. To find the tangent line to this ellipse at the point (1, 2, 1), we find normal vectors to
the two tangent planes. For the first, we simply have 〈0, 1, 1〉, because the plane is its own
tangent plane. For the second, ∇f = 〈2x, 2y, 0〉 = 〈2, 4, 0〉 at the point. The cross product
〈0, 1, 1〉 × 〈2, 4, 0〉 = 〈−4, 2,−2〉 and the line is 〈1, 2, 1〉+ t 〈−4, 2,−2〉.

Exercise: To find the normal line to the sphere f(x, y, z) = x2 + y2 + z2 = r2 through
any point, it is enough to visualize the situation. If you stand on the surface of the earth,
and travel perpendicular to the surface, then provided you travel downwards you will come
to the center of the earth. So the normal line to the sphere at (x, y, z) is t 〈x, y, z〉. One can
verify this by calculations: ∇f = 〈2x, 2y, 2z〉 so the line is 〈x, y, z〉+ t 〈2x, 2y, 2z〉, which can
be rewritten as t 〈x, y, z〉.



Exercise: Are there any points on the hyperboloid x2 − y2 − z2 = 1 where the tangent
plane is parallel to the plane z = x + y? To check if two planes are parallel, we check
whether their normal vectors are parallel, or scalar multiples of each other. The normal to
the tangent plane is 〈2x,−2y,−2z〉 and the normal to the given plane is 〈1, 1,−1〉. The
planes are parallel if there is a scalar c such that 〈2x,−2y,−2z〉 = c 〈1, 1,−1〉. To find the
point, we must solve the simultaneous equations for x, y, z, c:

x2 − y2 − z2 = 1

2x = c

−2y = c

−2z = −c.

We put x, y, z in terms of c: x = c/2, y = −c/2, z = c/2 and substitute into the first equation
to get c2/4 − c2/4 − c2/4 = −c2/4 = 1. The left side is negative, the right side is positive,
so there can be no solution. Therefore there is no point with a tangent plane parallel to the
give one.

Exercise: To show that the ellipsoid f(x, y, z) = 3x2 + 2y2 + z2 = 9 and the sphere
g(x, y, z) = x2 +y2 +z2−8x−6y−8z+24 = 0 are tangent to each other at the point (1, 1, 2)
we must check they have the same tangent plane at (1, 1, 2). We already know the tangent
planes have the point (1, 1, 2) in common, so we just need to check they have parallel normal
vectors.
∇f = 〈6x, 4y, 2z〉 = 〈6, 4, 4〉 at the point, and∇g = 〈2x− 8, 2y − 6, 2z − 8〉 = 〈−6,−4,−4〉.

Because ∇f = −∇g, the vectors are parallel, the planes are the same, and the surfaces are
indeed tangent to each other.


